August 23, 2019

“Software is like entropy: It is difficult to grasp, weighs nothing, and obeys the Second Law of Thermodynamics; i.e., it always increases.” — Norman Augustine Welcome everyone, this is your host Nikhil Maan aka Sc0rpi0n101 and this week will be the last week of coding for GSoC 2019. It is time to finish work now. The C Parser Travis Build Tests Documentation The C Parser I completed the C Parser last week along with the documentation for the module.

August 22, 2019

Welcome everyone, this is your host Nikhil Maan aka Sc0rpi0n101 and this week we’re talking about the C parser. The Fortran Parser The C Parser Documentation Travis Build The Fortran Parser The Fortran Parser is complete. The Pull Request has also been merged. The parser is merged in master and will be a part of the next SymPy release. You can check out the source code for the Parser at the Pull Request.

August 21, 2019

The last week of coding period is officially over. A summary of the work done during this week is:

  • #17379 is now complete and currently under review. I will try to get it merged within this week.
  • #17392 still needs work. I will try to put a closure to this by the end of week.
  • #17440 was started. It attempts to add a powerful (but optional) SAT solving engine to SymPy (pycosat). The performance gain for SAT solver is also subtle here: Using this
    from sympy import *
    from sympy.abc import x
    r = random_poly(x, 100, -100, 100)
    ans = ask(Q.positive(r), Q.positive(x))
    

    The performance is like

    # In master
     |  `- 0.631 check_satisfiability  sympy/assumptions/satask.py:30
     |     `- 0.607 satisfiable  sympy/logic/inference.py:38
     |        `- 0.607 dpll_satisfiable  sympy/logic/algorithms/dpll2.py:21
    # With pycosat
     |  `- 0.122 check_satisfiability  sympy/assumptions/satask.py:30
     |     `- 0.098 satisfiable  sympy/logic/inference.py:39
     |        `- 0.096 pycosat_satisfiable  sympy/logic/algorithms/pycosat_wrapper.py:11
    

    It is finished and under review now.

Also, with the end of GSoC 2019, final evaluations have started. I will be writing a final report to the whole project by the end of this week.

So far it has been a great and enriching experience for me. It was my first attempt at GSoC and I am lucky to get such an exposure. I acknowledge that I started with an abstract idea of the project but I now understand both the need and the code of New Assumptions pretty well (thanks to Aaron who wrote the most of it). The system is still in its early phases and needs a lot more work. I am happy to be a part of it and I will be available to work on it.

This is the last weekly report but I will still be contributing to SymPy and open source in general. I will try to write more of such experiences through this portal. Till then, Good bye and thank you!

August 20, 2019

This was the last week of the coding period. With not much of work left, the goal was to wrap-up the PR’s.

The week started with the merge of  PR #17001 which implemented a method cut_section() in the polygon class, in order to get two new polygons when a polygon is cut via a line. After this a new method first_moment_of_area() was added in PR #17153. This method used cut_section() for its implementation. Tests for the same were added in this PR. Also the existing documentation was improved. I also renamed the polar_modulus() function to polar_second_moment_of_area() which was a more general term as compared to the previous name. This PR also got merged later on.

Now, we are left with two more PR’s to go. PR #17122 (Column Buckling) and PR #17345 (Beam diagram). The column buckling probably requires a little more documentation. I will surely look into it and add some more explanations and references to it. Also, the beam diagram PR has been completed and documented. A few more discussions to be done on its working and we will be ready with it.

I believe that by the end of this week both of these will finally get a merge.

Another task that remains is the implementation of the Truss class. Some rigorous debate and discussion is still needed to be done before we start its implementation. Once we agree on the implementation needs and API it won’t be a difficult task to write it through.

Also, since the final evaluations have started I will be writing the project report which I have to submit before the next week ends.

Since officially the coding period ends here, there would be no ToDo’s for the next week, just the final wrapping up and will surely try to complete the work that is still left.

Will keep you updated!

Thanks!

Week 12 ends.. - So, finally after a long summer GSoC has come to an end!! It has been a great experience, and something which I will cherish for the rest of my life. I would like to thank my mentor Sartaj, who has been guiding me through the thick and thin of times....

As the title suggests, with the third phase, the journey of my GSoC 2019 comes to an end. It was full of challanges, learning experiences, and above all interaction with the open source community of SymPy.
In this blog post I will share with you the work done between phase 2 and phase 3, in terms of PRs, merged and open.

Merged

  • #17174 : In this PR, Gaussian ensembles were added to sympy.stats.

  • #17304 : While working on the above PR, I got an idea to open this one to add cicular ensembles to sympy.stats. I learned a lot about Haar measure while working on this.

  • #17306: This PR added matrices with random expressions. The challenging part of this PR was to generate canonical results for passing the tests.

  • #17336 : This was related to bug fix in Q.ask and Matrix. Take a look at an example here.

Open

  • #17387 : This PR aims to add support for assumptions of dependence among random variables, like, Covariance, etc.

  • #17146 : This PR is in its last stages to fix and upgrade the Range set and we are finalizing few things, like changes in the output of Range. As planned I was successful at writing exhaustive and systematic tests.

Well, now, time to say good bye! It was a nice experience writing about journey in this blog. If you have read this from the beginning then thanks a lot buddy, and I wish for your acceptance in GSoC 2020. Keep Open Sourcing :D

This report summarizes the work done in my GSoC 2019 project, Enhancement of Statistics Module wth SymPy. A step by step development of the project is available at czgdp1807.github.io.

About Me

I am a third year Bachelor of Technology student at Indian Institute of Technology, Jodhpur in the department of Computer Science and Engineering.

Project Outline

The project plan was focused on the following areas of statistics that were required to be added to sympy.stats.

  1. Community Bonding - I was supposed to add, Dirichlet Distribution, Multivariate Ewens Distribution, Multinomial Distribution, Negative multinomial distribution, and Generalized multivariate log-gamma distribution to sympy.stats.joint_rv_types.
  2. Phase 1 - I was supposed to work on stochastic processes, primraly on Markov chains, including it’s API design, algorithm and implementation.
  3. Phase 2 - I was expected to work on random matrices, including Gaussian ensembles and matrices with random expressions as their elements.
  4. Phase 3 - I planned to work on assumptions of dependence, improving result generation by sympy.stats and improving other modules so that sympy.stats can function properly.

Pull Requests

This section describes the actual work done during the coding period in terms of merged PRs.

  1. Community Bonding
  • #16576: This PR added Dirichlet and MultivariteEwens distributions.

  • #16808 : This PR added Multinomial and NegativeMultinomial distribution.

  • #16810 : This PR improved the API of Sum by allowing Range as the limits.

  • #16825 : This PR in continuation, added GeneralizedMultivariateLogGamma distribution. This was an interesting one due to the complexity involved in its PDF.

  • #16834 : This PR enhanced the Multinomial and NegativeMultinomial distributions by allowing symbolic dimensions for them.

  1. Phase 1
  • #16897 : This was related to sympy.core and it helped in removing disparity in the results of special function gamma.

  • #16908 : This PR improved sympy.stats.frv by allowing conditions with foriegn symbols.

  • #16913 : This removed the unreachable code from sympy.stats.frv.

  • #16914 : This PR allowed symbolic dimensions to MultivariateEwens distribution.

  • #16929 : This one was for the sympy.tensor module. It optimized the ArrayComprehension and covered some corner cases.

  • #16981 : This PR added the architecture of stochastic processes. It also added discrete Markov chain to sympy.stats.

  • #17030 : Some features like, joint_dsitribution were added to stochastic processes in this PR.

  • #17046 : Some common properties of discrete Markov chains, like fundamental matrix, fixed row vector were added.

  1. Phase 2
  • #16934 : The bug fixes for sympy.stats.joint_rv_types were complete and the further work has been handed over to my co-student, Ritesh.

  • #16962 : This was continuation of the work done in phase 1 for allowing symbolic dimensions in finite random variables. As I planned, this PR got merged in phase 2, after some changes.

  • #17083: The work done in this PR framed the platform and reason for the next one. The algorithm that got merged was a bit difficult to extend, and maintain. Thanks to Francesco for his comment for motivating me to re-think the whole framework.

  • #17163 : This was one of the most challenging PRs of the project, because, it involved re-designing the algorithm, refactoring the code and moreover lot of thinking. The details can be found at this comment.

  1. Phase 3
  • #17174 : In this PR, Gaussian ensembles were added to sympy.stats.

  • #17304 : While working on the above PR, I got an idea to open this one to add cicular ensembles to sympy.stats. I learned a lot about Haar measure while working.

  • #17306: This PR added matrices with random expressions. The challenging part of this PR was to generate canonical results for passing the tests.

  • #17336 : This was related to bug fix in Q.ask and Matrix. Take a look at an example here.

Miscellaneous Work

This section contains some of my PRs related to miscellanous issues like, workflow improvement, etc.

  • #16899 : This was a workflow related to PR to ignore the .vscode folder.

  • #17003 : This PR ignored the __pycahce__ folder by adding it .gitignore file.

Future Work

The following PRs are open and are in their last stages for merging. Any interested student can take a look at them to extend my work in his/her GSoC project.

  • #17387 : This PR aims to add support for assumptions of dependence among random variables, like, Covariance, etc.

  • #17146 : This PR is in its last stages to fix and upgrade the Range set and we are finalizing few things, like changes in the output of Range. As planned I was successful at writing exhaustive and systematic tests.

Apart from the above, work on densities of Circular ensembles remains to be done. One can read the Theorem 3, page 8 of this paper.

August 19, 2019

We’ve reached to the end of GSoC 2019, end to the really productive and wonderful summer. In the last two weeks I worked on documenting polycyclic groups which got merged as well, here is the PR sympy/sympy#17399.

Also, the PR on Induced-pcgs and exponent vector for polycyclic subgroups got merged sympy/sympy#17317.

Let’s have a look at some of the highlights of documentation.

  • The parameters of both the classes(PolycyclicGroup and Collector) has been discussed in detail.
  • Conditions for a word to be collected or uncollected is highlighted.
  • Computation of polycyclic presentation has been explained in detail highlighting the sequence in which presentation is computed with the corresponding pcgs and and polycyclic series elements used.
  • Other methods like subword_index, exponent_vector, depth, etc are also documented.

An example is provided for every functionality. For more details one can visit: https://docs.sympy.org/dev/modules/combinatorics/pc_groups.html

Now, I’m supposed to prepare a final report presenting all the work done. Will update with report next week. In addition to the report preparation I’ll try to add Parameters section in the docstrings for various classes and methods of pc_groups.

August 18, 2019

It’s finally the last week of the Google Summer of Code 2019. Before I start discussing my work over the summer I would like to highlight my general experience with the GSoC program.

GSoC gives students all over the world the opportunity to connect and collaborate with some of the best programmers involved in open source from around the world. I found the programme tremendusly enriching both in terms of the depth in which I got to explore some of the areas involved in my project and also gave me exxposure to some areas I had no previous idea about. The role of a mentor in GSoC is the most important and I consider myself very lucky to have got Yathartha Anirudh Joshi and Amit Kumar as my mentors. Amit and Yathartha has been tremendously encouraging and helpful throughout the summer. I would also like to mention the importance of the entire community involved, just being part of the SymPy community.

Work Completed

Here is a list of PRs which were opened during the span of GSoC:

  1. #16796 Added _solve_modular for handling equations a - Mod(b, c) = 0 where only b is expr

  2. #16890 Fixing lambert in bivariate to give all real solutions

  3. #16960 (Don’t Merge)(Prototype) Adding abs while converting equation to log form to get solved by _lambert

  4. #17043 Feature power_list to return all powers of a variable present in f

  5. #17079 Defining ImageSet Union

Here is a list of PRs merged:

  1. #16796 Added _solve_modular for handling equations a - Mod(b, c) = 0 where only b is expr

  2. #16890 Fixing lambert in bivariate to give all real solutions

Here is all the brief description about the PRs merged:

  1. #16796 Added _solve_modular for handling equations a - Mod(b, c) = 0 where only b is expr

In this PR a new solver _solve_modular was made for solving modular equations.

What type of equations to be considered and what domain?

A - Mod(B, C) = 0

    A -> This can or cannot be a function specifically(Linear, nth degree single
         Pow, a**f_x and Add and Mul) of symbol.(But currently its not a
        function of x)
    B -> This is surely a function of symbol.
    C -> It is an integer.
And domain should be a subset of S.Integers.

Filtering out equations

A check is being applied named _is_modular which verifies that only above mentioned type equation should return True.

Working of _solve_modular

In the starting of it there is a check if domain is a subset of Integers.

domain.is_subset(S.Integers)

Only domain of integers and it subset are being considered while solving these equations. Now after this it separates out a modterm and the rest term on either sides by this code.

modterm = list(f.atoms(Mod))[0]
rhs = -(S.One)*(f.subs(modterm, S.Zero))
if f.as_coefficients_dict()[modterm].is_negative:
    # f.as_coefficient(modterm) was returning None don't know why
    # checks if coefficient of modterm is negative in main equation.
    rhs *= -(S.One)

Now the equation is being inverted with the helper routine _invert_modular like this.

n = Dummy('n', integer=True)
f_x, g_n = _invert_modular(modterm, rhs, n, symbol)

I am defining n in _solve_modular because _invert_modular contains recursive calls to itself so if define the n there then it was going to have many instances which of no use. Thats y I am defining it in _solve_modular.

Now after the equation is inverted now solution finding takes place.

if f_x is modterm and g_n is rhs:
        return unsolved_result

First of all if _invert_modular fails to invert then a ConditionSet is being returned.

    if f_x is symbol:
        if domain is not S.Integers:
            return domain.intersect(g_n)
        return g_n

And if _invert_modular is fully able to invert the equation then only domain intersection needs to takes place. _invert_modular inverts the equation considering S.Integers as its default domain.

    if isinstance(g_n, ImageSet):
        lamda_expr = g_n.lamda.expr
        lamda_vars = g_n.lamda.variables
        base_set = g_n.base_set
        sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers)
        if isinstance(sol_set, FiniteSet):
            tmp_sol = EmptySet()
            for sol in sol_set:
                tmp_sol += ImageSet(Lambda(lamda_vars, sol), base_set)
            sol_set = tmp_sol
        return domain.intersect(sol_set)

In this case when g_n is an ImageSet of n and f_x is not symbol so the equation is being solved by calling _solveset (this will not lead to recursion because equation to be entered is free from Mod) and then the domain intersection takes place.

What does _invert_modular do?

This function helps to convert the equation A - Mod(B, C) = 0 to a form (f_x, g_n). First of all it checks the possible instances of invertible cases if not then it returns the equation as it is.

a, m = modterm.args
if not isinstance(a, (Dummy, Symbol, Add, Mul, Pow)):
        return modterm, rhs

Now here is the check for complex arguments and returns the equation as it is if somewhere it finds I.

if rhs.is_real is False or any(term.is_real is False \
            for term in list(_term_factors(a))):
        # Check for complex arguments
        return modterm, rhs

Now after this we check of emptyset as a solution by checking range of both sides of equation. As modterm can have values between [0, m - 1] and if rhs is out of this range then emptySet is being returned.

if (abs(rhs) - abs(m)).is_positive or (abs(rhs) - abs(m)) is S.Zero:
        # if rhs has value greater than value of m.
        return symbol, EmptySet()

Now the equation haveing these types are being returned as the following

if a is symbol:
        return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers)

    if a.is_Add:
        # g + h = a
        g, h = a.as_independent(symbol)
        if g is not S.Zero:
            return _invert_modular(Mod(h, m), (rhs - Mod(g, m)) % m, n, symbol)

    if a.is_Mul:
        # g*h = a
        g, h = a.as_independent(symbol)
        if g is not S.One:
            return _invert_modular(Mod(h, m), (rhs*invert(g, m)) % m, n, symbol)

The more peculiar case is of a.is_Pow which is handled as following.

if a.is_Pow:
        # base**expo = a
        base, expo = a.args
        if expo.has(symbol) and not base.has(symbol):
            # remainder -> solution independent of n of equation.
            # m, rhs are made coprime by dividing igcd(m, rhs)
            try:
                remainder = discrete_log(m / igcd(m, rhs), rhs, a.base)
            except ValueError: # log does not exist
                return modterm, rhs
            # period -> coefficient of n in the solution and also referred as
            # the least period of expo in which it is repeats itself.
            # (a**(totient(m)) - 1) divides m. Here is link of theoram:
            # (https://en.wikipedia.org/wiki/Euler's_theorem)
            period = totient(m)
            for p in divisors(period):
                # there might a lesser period exist than totient(m).
                if pow(a.base, p, m / igcd(m, a.base)) == 1:
                    period = p
                    break
            return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0)
        elif base.has(symbol) and not expo.has(symbol):
            remainder_list = nthroot_mod(rhs, expo, m, all_roots=True)
            if remainder_list is None:
                return symbol, EmptySet()
            g_n = EmptySet()
            for rem in remainder_list:
                g_n += ImageSet(Lambda(n, m*n + rem), S.Integers)
            return base, g_n

Two cases are being created based of a.is_Pow

  1. x**a
  2. a**x

x**a - It is being handled by the helper function nthroot_mod which returns required solution. I am not going into very mch detail for more information you can read the documentation of nthroot_mod.

a**x - For this totient is being used in the picture whose meaning can be find on this Wikipedia page. And then its divisors are being checked to find the least period of solutions.

  1. #16890 Fixing lambert in bivariate to give all real solutions

This PR went through many up and downs and nearly made to the most commented PR. And with the help of @smichr it was successfully merged. It mainly solved the bug for not returning all solutions of lambert.

Explaining the function _solve_lambert (main function to solve lambert equations)

Input - f, symbol, gens
OutPut - Solution of f = 0 if its lambert type expression else NotImplementedError

This function separates out cases as below based on the main function present in the main equation.

For the first ones:
1a1) B**B = R != 0 (when 0, there is only a solution if the base is 0,
                   but if it is, the exp is 0 and 0**0=1
                   comes back as B*log(B) = log(R)
1a2) B*(a + b*log(B))**p = R or with monomial expanded or with whole
                            thing expanded comes back unchanged
   log(B) + p*log(a + b*log(B)) = log(R)
   lhs is Mul:
       expand log of both sides to give:
       log(B) + log(log(B)) = log(log(R))
1b) d*log(a*B + b) + c*B = R
   lhs is Add:
       isolate c*B and expand log of both sides:
       log(c) + log(B) = log(R - d*log(a*B + b))

If the equation are of type 1a1, 1a2 and 1b then the mainlog of the equation is taken into concern as the deciding factor lies in the main logarithmic term of equation.

For the next two,
   collect on main exp
   2a) (b*B + c)*exp(d*B + g) = R
       lhs is mul:
           log to give
           log(b*B + c) + d*B = log(R) - g
   2b) -b*B + g*exp(d*B + h) = R
       lhs is add:
           add b*B
           log and rearrange
           log(R + b*B) - d*B = log(g) + h

If the equation are of type 2a and 2b then the mainexp of the equation is taken into concern as the deciding factor lies in the main exponential term of equation.

3) d*p**(a*B + b) + c*B = R
   collect on main pow
   log(R - c*B) - a*B*log(p) = log(d) + b*log(p)

If the equation are of type 3 then the mainpow of the equation is taken into concern as the deciding factor lies in the main power term of equation.

Eventually from all of the three cases the equation is meant to be converted to this form:-

f(x, a..f) = a*log(b*X + c) + d*X - f = 0 which has the
solution,  X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a)).

And the solution calculation process is done by _lambert function.

Everything seems flawless?? You might be thinking no modification is required. Lets see what loopholes are there in it.

What does PR #16890 do?

There are basically two flaws present with the this approach.

  1. Not considering all branches of equation while taking log both sides.
  2. Calculation of roots should consider all roots in case having rational power.

1. Not considering all branches of equation while taking log both sides.

Let us consider this equation to be solved by _solve_lambert function.

-1/x**2 + exp(x/2)/2 = 0

So what the old _solve_lambert do is to convert this equation to following.

2*log(x) + x/2 = 0

and calculates its roots from _lambert. But it missed this branch of equation while taking log on main equation.

2*log(-x) + x/2 = 0

Yeah you can reproduce the original equation from this equation.So basically the problem was that it missed the branches of equation while taking log. And when does the main equation have more than one branch?? The terms having even powers of variable x leads to two different branches of equation.

So how it is solved? What I has done is that before actually gets into solving I preprocess the main equation and if it has more than one branches of equation while converting taking log then I consider all the equations generated from them.(with the help of _solve_even_degree_expr)

How I preprocess the equation? So what I do is I replace all the even powers of x present with even powers of t(dummy variable).

Code for targeted replacement
lhs = lhs.replace(
            lambda i:  # find symbol**even
                i.is_Pow and i.base == symbol and i.exp.is_even,
            lambda i:  # replace t**even
                t**i.exp)
Example:-
Main equation -> -1/x**2 + exp(x/2)/2 = 0
After replacement -> -1/t**2 + exp(x/2)/2 = 0

Now I take logarithms on both sides and simplify it.

After simplifying -> 2*log(t) + x/2 = 0

Now I call function _solve_even_degree_expr to replace the t with +/-x to generate two equations.

Replacing t with +/-x
1. 2*log(x) + x/2 = 0
2. 2*log(-x) + x/2 = 0

And consider the solutions of both of the equations to return all lambert real solutions of -1/x**2 + exp(x/2)/2 = 0.

Hope you could understand the logic behind this work.

2. Calculation of roots should consider all roots in case having rational power.

This flaw is in the calculation of roots in function _lambert. Earlier the function_lambert has the working like :-

  1. Find all the values of a, b, c, d, e in the required loagrithmic equation
  2. Then it defines a solution of the form
    -c/b + (a/d)*l where l = LambertW(d/(a*b)*exp(c*d/a/b)*exp(-f/a), k)
    

    and then it included that solution. I agree everything seems flawless here. but try to see the step where we are defining l.

Let us suppose a hypothetical algorithm just like algorithm used in _lambert in which equation to be solved is

x**3 - 1 = 0

and in which we define solution of the form

x = exp(I*2*pi/n) where n is the power of x in equation

so the algorithm will give solution

x = exp(I*2*pi/3) # but expected was [1, exp(I*2*pi/3), exp(-I*2*pi/3)]

which can be found by finding all solutions of

x**n - exp(2*I*pi) = 0

by a different correct algorithm. Thats y it was wrong. The above algorithm would have given correct values for x - 1 = 0.

And the question in your mind may arise that why only exp() because the possiblity of having more than one roots is in exp(), because if the algorithm would have been like x = a, where a is some real constant then there is not any possiblity of further roots rather than solution like x = a**(1/n). And its been done in code like this:

code
num, den = ((c*d-b*f)/a/b).as_numer_denom()
p, den = den.as_coeff_Mul()
e = exp(num/den)
t = Dummy('t')
args = [d/(a*b)*t for t in roots(t**p - e, t).keys()]

Work under development

This PR tends to define a unifying algorithm for linear relations.

Future Work

Here is a list that comprises of all the ideas (which were a part of my GSoC Proposal and/or thought over during the SoC) which can extend my GSoC project.

  1. Integrating helper solvers within solveset: linsolve, solve_decomposition, nonlinsolve

  2. Handle nested trigonometric equations.

August 13, 2019

With the end of this week the draw() function has been completely implemented. The work on PR #17345 has been completed along with the documentations.

As mentioned in the previous blog this PR was an attempt to make the draw() function use SymPy’s own plot() rather than importing matplotlib externally to plot the diagram. The idea was to plot the load equation which is in terms of singularity function. This would directly plot uniformly distributed load, uniformly varying load and other higher order loads except for point loads and moment loads.
The task was now to plot the remaining parts of the diagram which were:

  • A rectangle for drawing the beam
  • Arrows for point loads
  • Markers for moment loads and supports
  • Colour filling to fill colour in inside the higher order loads (order >=0).

Instead of making temporary hacks to implement these, I went a step further to give the plotting module some additional functionalities. Apart from helping in implementing the draw() function,  this would also enhance the plotting module.

The basic idea was to have some additional keyworded arguments in the plot() function. Every keyworded argument would be a list of dictionaries where each dictionary would represent the arguments (or parameters) that would have been passed in the corresponding matplotlib functions.

These are the functions of matplotlib that can now be accessed using sympy’s plot(), along with where there are used in our current situation:

Another thing which is worth mentioning is that to use fill_between() we would require numpy’s arange() for sure. Although it might be better if we could avoid using an external module directly, but I guess this is unavoidable for now.

Also, I have added an option for the user to scale the plot and get a pictorial view of it in case where the plotting with the exact dimensions doesn’t produce a decent diagram. For eg. If the magnitude of the load (order >= 0) is relatively higher to other applied loads or to the length of the beam, the load plot might get out of the final plot window.

Here is an example:

>>> R1, R2 = symbols('R1, R2')
>>> E, I = symbols('E, I')

>>> b1 = Beam(50, 20, 30)

>>> b1.apply_load(10, 2, -1)
>>> b1.apply_load(R1, 10, -1)
>>> b1.apply_load(R2, 30, -1)
>>> b1.apply_load(90, 5, 0, 23)
>>> b1.apply_load(10, 30, 1, 50)
>>> b1.apply_support(50, "pin")
>>> b1.apply_support(0, "fixed")
>>> b1.apply_support(20, "roller")
# case 1 on the left
>>> p = b1.draw()
>>> p.show()

# case 2 on the right
>>> p1 = b1.draw(pictorial=True)
>>> p1.show()

Next Week:

  • Getting leftover PR’s merged
  • Initiating implementation of Truss class

Will keep you updated!

Thanks!

So, the second last week of the project is over and we have decided to improve on the work we have done so far in the last few days. Read below to know more.

In this week, I worked on, #17146 concered with symbolic Range, #17387 related to assumptions of dependence among random variables, #17336 which fixed the bug in Q.hermitian the one I told you about in my previous post, and #17306, implementing the matrices with random expressions.

In fact, the last two PRs are merged. Now, coming on to symbolic Range, I have completed the testing of all the methods except slicing feature of __getitem__, which I will do in this week. Regarding, the bug in Q.hermitian, well, my code at first, was giving incorrect results due to overriding problems in the logic. Francesco, helped me correct them and it’s finally in. The major part of the week was devoted to assumptions of dependence. I did some study from Wikipedia, and implemented the class DependentPSpace. I have kept the class static because it will handle queries of the type, density(X + Y, Eq(Covariance(X, Y), S(1)/2) which from my point of view doesn’t require creation of a probability space object.

Coming on to the plan for the last week, we have decided that no new PRs will be opened and focus will be towards completing the already open PRs, so that we have most of our work completed. Francesco has also suggested to test the newly introduced classes with the ones of Wolfram Alpha, so that there are no inconsistencies.

So, the second last week of the official coding period is over now. During the last two weeks, I was mostly occupied with on-campus placement drives, hence I couldn’t put up a blog earlier. A summary of my work during these weeks is as follows:

  • First of all, #17144 is merged 😄. This was a large PR and hence took time to get fully reviewed. With this, the performance of New assumptions comes closer to that of the old system. Currently, queries are evaluated about 20X faster than before.

  • #17379 attempts to remove SymPy’s costly rcall() from the whole assumptions mechanism. It’s a follow-up from #17144 and the performance gain is subtle for large queries. E.g.
    from sympy import *
    p = random_poly(x, 50, -50, 50)
    print(ask(Q.positive(p), Q.positive(x)))
    

    In the master it takes 4.292 s, out of this 2.483 s is spent in rcall. With this, the time spent is 1.929 s and 0.539 s respectively.

  • #17392 attempts to make the New Assumptions able to handle queries which involve Relationals. Currently, it works only with simple queries (e.g. ask(x>y, Q.positive(x) & Q.negative(y)) now evaluates True) just like the way old system works. This is a much-awaited functionality for the new system. Also, during this I realized that sathandlers lack many necessary facts. This PR also adds many new facts to the system.

For the last week of coding, my attempt would be to complete both of these PRs and get them merged. Also, I will try to add new facts to sathandlers.

August 12, 2019

Week 11 ends.. - The second last week has also come to an end. We are almost there at the end of the ride. Me and Sartaj had a meeting on 13th of August about the final leftovers to be done, and wrapping up the GSoC work successfully. Here are the works which have...

August 11, 2019

This was the eleventh week meeting with the GSoC mentors which was scheduled on Sunday 11th August, 2019 between 11:30 - 12:30 PM (IST). Me, Yathartha and Amit were the attendees of the meeting. _solve_modular was discussed in this meeting.

Here is all the brief description about new solver _solve_modular for solving modular equations.

What type of equations to be considered and what domain?

A - Mod(B, C) = 0

    A -> This can or cannot be a function specifically(Linear, nth degree single
         Pow, a**f_x and Add and Mul) of symbol.(But currently its not a
        function of x)
    B -> This is surely a function of symbol.
    C -> It is an integer.
And domain should be a subset of S.Integers.

Filtering out equations

A check is being applied named _is_modular which verifies that only above mentioned type equation should return True.

Working of _solve_modular

In the starting of it there is a check if domain is a subset of Integers.

domain.is_subset(S.Integers)

Only domain of integers and it subset are being considered while solving these equations. Now after this it separates out a modterm and the rest term on either sides by this code.

modterm = list(f.atoms(Mod))[0]
rhs = -(S.One)*(f.subs(modterm, S.Zero))
if f.as_coefficients_dict()[modterm].is_negative:
    # f.as_coefficient(modterm) was returning None don't know why
    # checks if coefficient of modterm is negative in main equation.
    rhs *= -(S.One)

Now the equation is being inverted with the helper routine _invert_modular like this.

n = Dummy('n', integer=True)
f_x, g_n = _invert_modular(modterm, rhs, n, symbol)

I am defining n in _solve_modular because _invert_modular contains recursive calls to itself so if define the n there then it was going to have many instances which of no use. Thats y I am defining it in _solve_modular.

Now after the equation is inverted now solution finding takes place.

if f_x is modterm and g_n is rhs:
        return unsolved_result

First of all if _invert_modular fails to invert then a ConditionSet is being returned.

    if f_x is symbol:
        if domain is not S.Integers:
            return domain.intersect(g_n)
        return g_n

And if _invert_modular is fully able to invert the equation then only domain intersection needs to takes place. _invert_modular inverts the equation considering S.Integers as its default domain.

    if isinstance(g_n, ImageSet):
        lamda_expr = g_n.lamda.expr
        lamda_vars = g_n.lamda.variables
        base_set = g_n.base_set
        sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers)
        if isinstance(sol_set, FiniteSet):
            tmp_sol = EmptySet()
            for sol in sol_set:
                tmp_sol += ImageSet(Lambda(lamda_vars, sol), base_set)
            sol_set = tmp_sol
        return domain.intersect(sol_set)

In this case when g_n is an ImageSet of n and f_x is not symbol so the equation is being solved by calling _solveset (this will not lead to recursion because equation to be entered is free from Mod) and then the domain intersection takes place.

What does _invert_modular do?

This function helps to convert the equation A - Mod(B, C) = 0 to a form (f_x, g_n). First of all it checks the possible instances of invertible cases if not then it returns the equation as it is.

a, m = modterm.args
if not isinstance(a, (Dummy, Symbol, Add, Mul, Pow)):
        return modterm, rhs

Now here is the check for complex arguments and returns the equation as it is if somewhere it finds I.

if rhs.is_real is False or any(term.is_real is False \
            for term in list(_term_factors(a))):
        # Check for complex arguments
        return modterm, rhs

Now after this we check of emptyset as a solution by checking range of both sides of equation. As modterm can have values between [0, m - 1] and if rhs is out of this range then emptySet is being returned.

if (abs(rhs) - abs(m)).is_positive or (abs(rhs) - abs(m)) is S.Zero:
        # if rhs has value greater than value of m.
        return symbol, EmptySet()

Now the equation haveing these types are being returned as the following

if a is symbol:
        return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers)

    if a.is_Add:
        # g + h = a
        g, h = a.as_independent(symbol)
        if g is not S.Zero:
            return _invert_modular(Mod(h, m), (rhs - Mod(g, m)) % m, n, symbol)

    if a.is_Mul:
        # g*h = a
        g, h = a.as_independent(symbol)
        if g is not S.One:
            return _invert_modular(Mod(h, m), (rhs*invert(g, m)) % m, n, symbol)

The more peculiar case is of a.is_Pow which is handled as following.

if a.is_Pow:
        # base**expo = a
        base, expo = a.args
        if expo.has(symbol) and not base.has(symbol):
            # remainder -> solution independent of n of equation.
            # m, rhs are made coprime by dividing igcd(m, rhs)
            try:
                remainder = discrete_log(m / igcd(m, rhs), rhs, a.base)
            except ValueError: # log does not exist
                return modterm, rhs
            # period -> coefficient of n in the solution and also referred as
            # the least period of expo in which it is repeats itself.
            # (a**(totient(m)) - 1) divides m. Here is link of theoram:
            # (https://en.wikipedia.org/wiki/Euler's_theorem)
            period = totient(m)
            for p in divisors(period):
                # there might a lesser period exist than totient(m).
                if pow(a.base, p, m / igcd(m, a.base)) == 1:
                    period = p
                    break
            return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0)
        elif base.has(symbol) and not expo.has(symbol):
            remainder_list = nthroot_mod(rhs, expo, m, all_roots=True)
            if remainder_list is None:
                return symbol, EmptySet()
            g_n = EmptySet()
            for rem in remainder_list:
                g_n += ImageSet(Lambda(n, m*n + rem), S.Integers)
            return base, g_n

Two cases are being created based of a.is_Pow

  1. x**a
  2. a**x

x**a - It is being handled by the helper function nthroot_mod which returns required solution. I am not going into very mch detail for more information you can read the documentation of nthroot_mod.

a**x - For this totient is being used in the picture whose meaning can be find on this Wikipedia page. And then its divisors are being checked to find the least period of solutions.

Hope I am able to clear out everything!!

Code improvement takes time!!

August 10, 2019

A lot of modifications have been made to the PR #17308 so that the functionality can be well implemented and the code could be clean and efficient.

The PR is merged to the master branch.

August 06, 2019

For this week, I’ve made some more minor changes to the Indexed pull request from last week, in addition to filing a new matrix wildcard pull request.

Matrix Wildcards (again)

Since #17223 was merged this week, I started with an implementation of matrix wildcards that takes advantage of the functionality included in the pull request. I thought that this would be relatively straightforward, with an implementation of the matches method for the MatrixWild subclass being enough. There was one problem though: the underlying matching implementation assumes that all powers in the expression are an instance of the Pow class. However, this isn’t true for matrix expressions: the MatPow class, which represents matrix powers, is a subclass of its own. I’m not exactly sure what the reason for this is, since a quick change of MatPow to inherit from Pow doesn’t seem to break anything. I’ll probably look into this a bit more, since I think this might have something to do with the fact that Matrix exponents can also include other matrices.

My solution for this was to allow temporarily allow expansion of powers by recursing through the expression tree and setting the is_Pow field of each matrix power to True and later reverting these states later. It doesn’t look pretty, but it does seem to work (you can see the code here).

Next Steps

I’ll try to get started with some optimizations that utilize this wildcard class once the pull request gets merged.

This week was about a lot of debugging and testing. I also got to know some facts about random matrices and group theory.

With the ending of 10th week, we have entered the second last week of the project. Well, this week was full of finding bugs, correcting and testing them. Mainly, I worked on, #17146, #17304, #17336 and #17306. The first one was related to symbolic Range, and it lacked systematic and robust tests. I pushed some commits to resolve the issue, though more is to be done. Now, coming to the second PR, it was related to circular ensembles. I got to know that distribution of these ensembles is something called Haar measure on U(n), group of unitary matrices. I was not familiar with this. Thanks to jksuom for sharing some papers for the same. I will go through them in the following week. The third PR fixes a bug which was found while working on circular ensembles. Acutally, ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 - I, 3, I], [4, -I, 1]]))) was giving False, however clearly the matrix is hermitian. So, I went ahead fixing it and waiting for reviews on my approach. The last one is related to matrices with random elements and it is complete after fixing a few bugs related to canonical outputs.

What I learnt this week? Well, I learnt, When you think your work is complete, well, sorry to say, that’s the beginning ;-)

Bye!!

“Software is like entropy: It is difficult to grasp, weighs nothing, and obeys the Second Law of Thermodynamics; i.e., it always increases.” — Norman Augustine Welcome everyone, this is your host Nikhil Maan aka Sc0rpi0n101 and we will talk all about the Fortran Parser this week. I have passed the second evaluation and Fortran Parser pull request is complete. The Week Fortran Parser SymPy Expression Travis Builds The C Parser The Meeting The Week This week began with me working on the C parser to finalize that.

August 05, 2019

This was the end of the tenth week, and we have entered the final phase of the project.

For the last phase we have Truss calculations to be implemented in the continuum_mechanics module. I had initiated a discussion regarding what needs to be done and how the implementation will move forward in an issue #17302. We will have to analyse a bit more about making Truss calculations symbolic and what benefits one might get in solving it symbolically. We have some good packages to compare from like this. I guess a bit more discussion is needed before we go ahead with it.

Besides this, I had worked on improving the draw() function implemented in the previous week in PR #17240. I modified it to use the _backend attribute for plotting the beam diagram. This could have worked until I realised that using the _backend attribute doesn’t really has affect the Plot object. To understand the last statement, lets go to how sympy.plot() works.

In simple terms, the equations that we pass through the plot() function as arguments are actually stored in _series attribute. So we can indirectly say that the basic data of the plot is stored in this attribute. But using the _backend attribute wouldn’t alter _series at all and if _series remains empty at the start it would end up storing nothing.

But we are of course getting a decent plot at the end, so shouldn’t we probably ignore this? No, it would surely give the plot but we won’t be getting a fully defined Plot object which we can further use with PlotGrid to get a subplot which includes all the five plots related to the beam.

Keeping this in mind, I tried an alternative way to directly use sympy.plot()  to give the plot. Although a bit hard and time taking to do, I have intiated this in a draft PR #17345. This PR perfectly plots a rectangular beam and loads (except point and moment loads). Only things that are left here are to plot supports and arrows denoting the direction of the load.

The example below shows how it functions: (keep in mind it just plots the basic structure of the intended beam diagram, it hasn’t been completed yet)

>>> E, I = symbols('E, I')
>>> b = Beam(9, E, I)
>>> b.apply_load(-12, 9, -1)  # gets skipped
>>> b.apply_load(50, 5, -2)  # gets skipped
>>> b.apply_load(3, 6, 1, end=8)
>>> b.apply_load(4, 0, 0, end=5)
>>> b.draw()

I also tried to complete the leftover PR’s in this week, but still some work is left.

Next week:

  • Completing the draw() function
  • Documentation and testing
  • Starting Truss implementations

Will keep you updated!

Thanks!

Week 10 ends.. - Phase 3 of the GSoC coding period is traversong smoothly. !! I and Sartaj had a meeting on the 05th of August, about the timeline of the next 2 weeks. Here are the deliverables that have been completed in this week, including the minutes of the meeting. The second aseries...

The tenth week of coding period has ended and a new PRsympy/sympy#17317 has been introduced. The PR implements induced Pcgs and exponent vector for polycyclic subgroups with respect to the original pcgs of the group. Below is an example to show the functionality.

>>> from sympy.combinatorics import *
>>> S = SymmetricGroup(8)
>>> G = S.sylow_subgroup(2)
>>> gens = [G[0], G[1]]
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> ipcgs = collector.induced_pcgs(gens)
>>> [gen.order() for gen in ipcgs]
[2, 2, 2]

Further it can also be used to implement Canonical polycyclic sequence which can be used to check if two subgroups of polycyclic presented group G are equal or not.

For the next week I’ll try to complete the documentation work on polycyclic groups and open a PR for the same.

Till then, good byee..

August 04, 2019

This was the tenth week meeting with the GSoC mentors which was scheduled on Sunday 4th August, 2019 between 1:00 - 2:00 PM (IST). Me, Yathartha were the attendees of the meeting.

  • Discussing previous week’s progress
  1. Progress of _solve_modular:- In PR #16976 After discussing with Yathartha, I decided to change the basic model of the _solve_modular such that I should be able to target equations more efficiently and also the rest of the types of equation should return ConditionSet. Cases like Mod(a**x, m) - rhs = 0 are special type and will be handled differently with the helper functions of ntheory module.

  2. Progress of ImageSet Union:- In PR #17079 This PR is currently been left for review.

  • Next week goals

  • Work upon _solve_modular
  • In the following week I will be changing the domain of solving equations to Integers only.

Code improvement takes time!!

August 03, 2019

I am so happy to pass the second evaluation!

This week is dedicated to the implementation of new iteration functionalities in Array module. Since the behaviour of __getitem__ is changed last week, we need to find a way to replace the old way of iterating arrays.

For this purpose, a generator is implemented to enable the iteration over each element, which was the old way in SymPy to iterate the array. This functionality is equivalent to flattening the array and then visiting one by one these elements, so the new class is named as Flatten. The advantage of generator will contribute to less memeory cose while iterating. This implementation corresponds as well the lazy-evaluation that I planned to implement in my proposal.

So the implementation is in #17308

August 01, 2019

Week 9 ends.. - The last phase of this journey has started. I am happy to let you know that I have passed Phase 2 successfully. Phase 3 will include merging of some important code written in Phase 2, and also implementation of some other useful code. I had a meeting with Sartaj in...

July 31, 2019

I spent most of this week getting #17144 ready to be merged. I had to change a lot of things from the last attempt. One of such was an attempt on early encoding, I had tried it on Literals. They were eventually going to be encoded so I tried to do this when Literals were created only. But as Aaron suggested, my approach had left encodings in the global space and hence could leak memory. During the week, I tried to attach encoding to the CNF object itself but it would have needed a lot of refactoring, since CNF objects interacted with other such objects. So, after some attempts, at the end I left the encoding to be done at last in EncodedCNF object. Currently, this is ready to be merged.

For the coming weeks, I would try to improve over this.

This was also the week for second monthly evaluation and I feel happy to announce that I passed it. From this week my college has also started but I am still able to give the required time to this project and complete it.

Will keep you updated. Thank you !

July 29, 2019

With the end of this week the third phase officially ends.

There has been some discussions in the PR #17240 which implements the draw() function. We might change the name of the function to plot() which is more consistent with the previous beam methods plot_shear_force(), plot_bending_moment(), etc.

Another discussion was about making this beam diagram a part of the plot_loading_results(), which basically intends to plot all the beam related plots. Although currently the beam diagram uses matplotlib as an external module, whereas the plot_loading_results() uses PlotGrid which is Sympy’s internal functionality. So it would be a bit tricky to merge those two.

We also discussed the idea or rather the possibility of directly making use of SymPy’s own plot to create a beam diagram. SymPy’s plot() is capable to plotting Singularity functions, so the load applied on the beam can also be plotted using sympy.plot() as beam.load is indeed in terms of singularity function. But there is a problem when it comes to point loads and moment loads as the are in terms singularity function of negative order (or exponent). Not sure whether the sympy plot for singularity functions of negative order is plotted correctly, but the current plot won’t help us in drawing point loads and moment loads. We might have to deal with it separately.

I have opened a discussion in the mailing list regarding whether the plot is correct for singularity functions of negative order, or what else should be done in order to get it corrected.

Also, it will be difficult to plot a rectangle (for making beam) and markers (for making supports) via sympy.plot(). One idea is to go with the _backend attribute of sympy.plot() which helps in directly using the backend (i.e. matplotlib backend). I will have a look over it.

Of course if the beam diagram is made using SymPy’s own plot it would surely be preferred but for that we also need work on sympy.plot() as currently it is limited to certain functionalities.

From the next week I will be starting with the last phase of implementing a Truss structure and its respective calculations.

Since only last few weeks are left, I think I will be able to make a draft PR for the last phase implementation by the end of the next week. And then we would only be left with minor things and leftovers of the previous phases.

Also, I am glad to share that I was able to pass the second evaluations. So once again thank you mentors for all your support and guidance!

Next Week:

  • Starting phase-IV  implementations
  • Simultaneously working and discussing previous PR’s.

Will keep you updated!

Thanks!

This week I recieved a lot of reviews from the members of community on my various PRs and this has formed the base of the work for the next week. Let me share some of those reviews with you.

As I told you that the PR #17146 was pending for reviews. Well, I received a lot of comments from @oscarbenjamin and @smichr on pretty printing of symbolic Range, the way tests are written, about inf and sup of Range. This in turn helped me to discover bugs in other features of Range, like, reversed. In the following week, I will work on this stuff and will correct the things. Now moving on to the random matrices, i.e., the PR #17174 has been merged but more work is to be done for Matrix with entries as random variables. In fact, I studied about expressions of random matrices and summarised the results here. Though the findings suggest specific algorithms for specific expressions like sum. I am still looking for a more generalized technique and will update you if found any.

So, coming to the learning aspect. This week I learnt about the importance of exhaustive and systematic tests. The tests which I wrote for symbolic Range aren’t so systematic and robust. I have found a way to improve them from this comment.

That’s all for now, signing off!!

Hello everyone, the ninth week of coding period has ended and there is a really good news the polycyclic group PR sympy/sympy#16991 that we were working from the last one and half months is finally merged. This week I didn’t do that much work except organizing different methods and fixing small issues in the above pr to get it merged.

There has been a lot of rearrangement of methods, where most of the methods were moved to the class Collector from the class PolycyclicGroup. Now, we do not need free symbols in-hand, they can be computed by the Collector if not provided by the user. There are few more things which are changed like relative order is computed in the course of polycyclic sequence and series computation. For better look one can go through the above Pr.

I’m hopping to implement few things next week which are mentioned below.

  • Induced polycyclic sequence for a subgroup.
  • Get started with writing docs for polycyclic groups.

Till then, good byee..

July 28, 2019

Welcome everyone, this is your host Nikhil Maan aka Sc0rpi0n101 and this time we will be talking about the second evaluation for GSoC. The main objective of the week was to get the Fortran parser ready. The Fortran Parser Traivs and the Tests LFortran Evaluation!!! The meeting What Now The Fortran Parser The Fortran parser is finally complete after shifting to using SymPy’s codegen AST. It can now parser all the stuff that the parser could do before shifting.

July 27, 2019

This was the eigth week meeting with the GSoC mentors which was scheduled on Saturday 27th July, 2019 between 1:30 - 2:30 PM (IST). Me, Yathartha and Amit were the attendees of the meeting.

  • Discussing previous week’s progress
  1. Progress of _solve_modular:- In PR #16976 I implemented the basic design of _solve_modular. Some very good suggestion by Yathartha for creating _invert_modular were very helpful. Now basically the _solve_modular first do preprocessing and invert it and then find solution and in final domain intersection takes place.

  2. Progress of ImageSet Union:- In PR #17079 I will be implementing an algorithm based on heurestics for performing ImageSet Union this week. Basic code is being already written for defining a function and only algorithm part is left which will be performed in this week.

  • Next week goals

  • Work upon _solve_modular and ImageSet Union PR

Code improvement takes time!!


Older blog entries


Planet SymPy is made from the blogs of SymPy's contributors. The opinions it contains are those of the contributor. This site is powered by Rawdog and Rawdog RSS. Feed readers can read Planet SymPy with RSS, FOAF or OPML.